SODIUM-COOLED FAST REACTORS – GENERATION IV SYSTEMS

JORDI ROGLANS

Director, Nuclear Engineering Division

Presentation to Joint Committee on Energy State Capitol, Little Rock, Arkansas 28 August 2017

PUWFRPAIN

A VITAL PART OF THE DEPARTMENT OF ENERGY NATIONAL LABORATORY SYSTEM

Advanced Photon Source

- Designated national laboratory in 1946
- Operated for DOE by UChicago Argonne, LLC
 - \$735 M Budget (FY 2016)
 - 3300 employees, 7200 facility users, 460 students, 300 postdocs, 250 joint faculty
 - Collaborate with over 600 agencies, private companies, and institutions worldwide
 - 1500 acre site
 - Conduct multi-disciplinary research in basic and applied science Build/operate major national user facilities Pioneered most civilian nuclear technologies

used worldwide

Supercomputer Mira Argonne National Laboratory

ARGONNE'S NUCLEAR PROGRAM BUILDS ON PIONEERING ACHIEVEMENTS

- Seminal work on reactors and fuel cycle technologies
- Our mission today is to advance the safe, secure use of nuclear energy and management of nuclear materials
 - Incorporating S&T advances in the development, design, and operation of nuclear energy systems

GENERATIONS OF NUCLEAR REACTORS

GENERATION IV NUCLEAR SYSTEMS

Goals – Developed during Technology Roadmap (US DOE 2002)

- SUSTAINABILITY
 - Effective Fuel Utilization
 - Fuel Cycle Impact on Environment Waste minimization
- ECONOMICS
 - Life-cycle cost advantage
 - Financial risk comparable to other sources
- SAFETY AND RELIABILITY
 - Excel in safety and reliability
 - Very low likelihood and degree of reactor core damage
 - Eliminate need for offsite emergency response
- PROLIFERATION RESISTANCE AND PHYSICAL PROTECTION
 - Increase assurance of unattractiveness and least desirable route for diversion of material
 - Increased physical protection

GENERATION IV NUCLEAR SYSTEMS

- Six Generation IV Systems considered internationally
- Often target missions beyond electricity
 - High temperature energy products
 - Fuel cycle benefits

System	Neutron spectrum	Coolant	Outlet coolant Temp. °C	Fuel cycle	Size (MWe)
VHTR (Very high temperature reactor)	thermal	helium	900-1 000	open	250-300
SFR (Sodium-cooled fast reactor)	fast	sodium	550	closed	30-150, 300-1 500, 1 000-2 000
SCWR (Supercritical water cooled reactor)	thermal/fast	water	510-625	open/closed	300-700 1 000-1 500
GFR (Gas-cooled fast reactor)	fast	helium	850	closed	1200
LFR (Lead-cooled fast reactor)	fast	lead	480-800	closed	20-180, 300-1 200, 600-1 000
MSR (Molten salt reactor)	Epithermal/fast	fluoride salts	700-800	closed	1 000

FUEL MANAGEMENT IN FAST REACTORS

FUEL MANAGEMENT IN FAST REACTORS

Used Light Water Reactor Fuel

- Uranium, plutonium and other transuranics can be used as fuel in fast reactors
- Uranium resource utilization is improved by a hundred-fold as compared to current commercial reactors

- Recycling reduces radiotoxicity of waste
- Repository siting will be easier
- Optimize repository utilization

SODIUM-COOLED FAST REACTOR (SFR)

- Fuel Cycle Applications
- Inherent Safety
- Multiple small modular designs

- Considerable experience in several countries with experimental, prototype and demonstration SFRs
 - Russia, China, US, France, Japan, India, others – current and previous experience

SODIUM COOLED FAST REACTORS - SAFETY

- Superior heat transfer properties of liquid metals allow:
 - Low pressure operation no "pressure vessels" needed
 - Designed to prevent loss of coolant
 - Enhanced natural circulation for heat removal
- Inherent safety design
 - Designed to provide feedbacks to prevent fuel damage during transients
 - Loss of heat removal
 - Loss of flow (circulation pumps)
 - Transient response is such that as temperature increases, power is reduced and reactor reaches safe condition
 - Demonstrations performed (EBR-II and FFTF)
- Passive Safety Features
 - Multiple paths for passive decay heat removal envisioned
 - Natural circulation systems
 - Response time

SODIUM-COOLED FAST REACTORS - SAFETY

- Reactor technology and associated fuel cycle developed with EBR-II
- Key safety tests conducted and demonstrated inherent safety

- Inherent safety
 - Reactor shuts itself down safely under transients
- Passive Safety
 - Decay heat removal with natural circulation systems; no electricity required

EXPERIMENTAL BREEDER REACTOR II

- EBR II design features
 - Metal alloy fuel with inherent safety features
 - Pool-type design with heat transfer system components in cold pool, serving as a massive heat sink
 - Unique configuration minimizing thermal stresses on major primary system components
 - Most of the sodium inventory at reactor inlet temperature
- 30 years of successful and safe operation
 - High capacity factors approaching 80% even with an aggressive testing program
 - Maintenance techniques were proven
 - Very low exposure to personnel
 - · Excellent safety record
 - Sodium management demonstrated
 - Over 150,000 metal fuel pins irradiated up to 20% burn-up without failure
 - Fuel reprocessing demonstrated with 35,000 metal fuel pins reprocessed

ACKNOWLEDGEMENT

Government License Notice

 The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

