

EXHIBIT C1

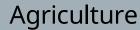
ILLINOIS RIVER WATERSHED PARTNERSHIP

PROGRESS AND OPPORTUNITIES

SENATE AND HOUSE COMMITTEE ON AGRICULTURE, FORESTRY, AND ECONOMIC DEVELOPMENT

IRWP Programs

- Public Education
- Low Impact Development/Green Infrastructure
- Riparian Restoration and Landowner Services
- Septic Tank Replacement Program
- Water Quality Monitoring
- Recreation Stewardship


Local Stakeholders

Consensus-based solutions that support our region

Business

- Tyson
- Simmons
- Denali

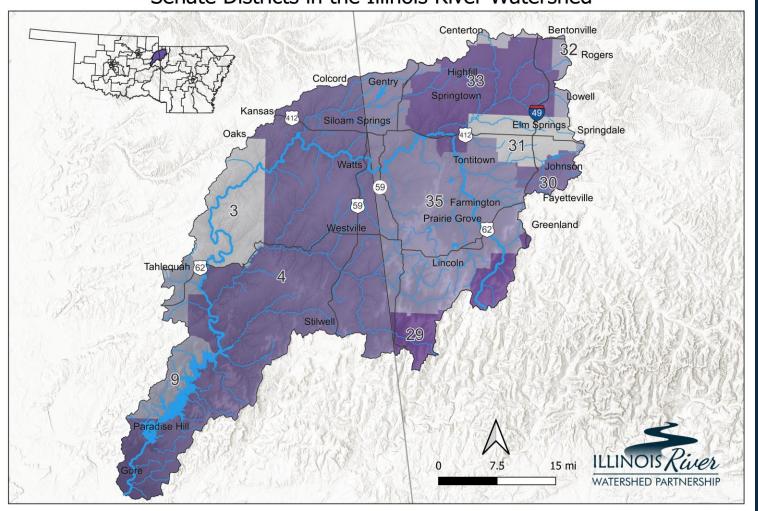
- Local producers
- AR Farm Bureau
- OK Farm Bureau

Conservation

- AGFC
- ANRD
- Quantified Ventures

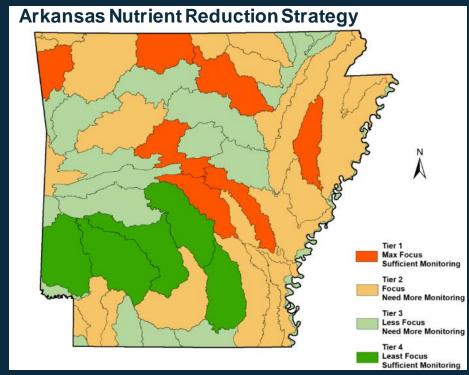
Construction

- Burns & McDonnell
- Crafton Tull



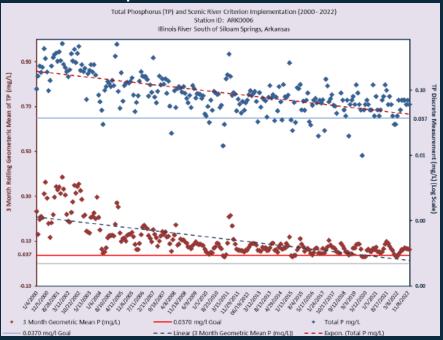
Government

- Springdale Water Utilities
- Cherokee Nation
- Technic, Res & Ed GRDA
- AR Water Resources Center (AWRC)
- NWAMN
- OK Conservation Commission

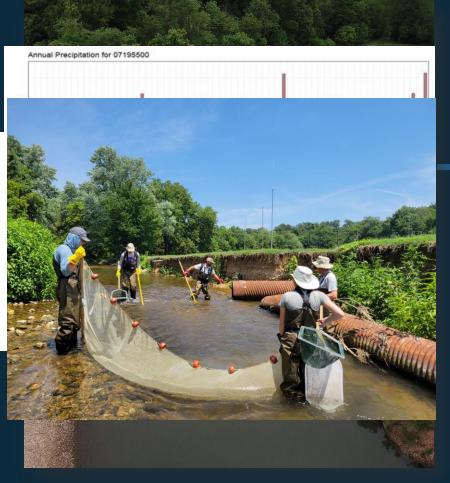

Senate Districts in the Illinois River Watershed

The Watershed is a Priority for

the State



Tier 1: Increase or maintain downward nutrient trends

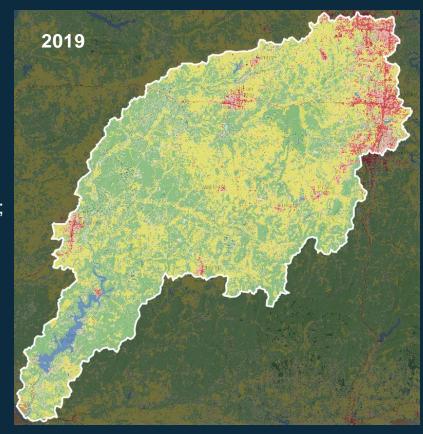


WATER QUALITY

- Many streams which do not meet designated use thresholds
- We can make big changes when we put our minds to it!

Subwatershed (2022) DRAFT	AU	Par am e ter
Little Osage Creek	AR_11110103_630 AR_11110103_933	Primary Contact E. coli
Moores Creek	AR_11110103_026	Primary Contact E. coli
Muddy Fork	AR_11110103_027	Primary Contact E. coli
Illinois River	AR_11110103_024 AR_11110103_028 AR_11110103_020 AR_11110103_018	Primary Contact E. coli; Turbidity Base Flow
Baron Fork	AR_11110103_813	Critical Season DO
Clear Creek	AR_11110103_029	Primary/Secondary Contact E. coli
Unnamed Tributary of Brush Creek	AR_11110103_733	Primary Season DO
Lake Fayetteville	AR_11110103_4080	pH - Short Term Continuous
Flint Creek	OK121700060010_00	Oxygen, Dissolved
Illinois River	OK121700030280_00	Enterococcus, Escherichia coli, Phosphorus, Total
Pumpkin Hollow Creek	OK121700030090_00	Oxygen, Dissolved
Tyner Creek	OK121700050090_00	Oxygen, Dissolved
Barron Fork	OK121700050010_00	Phosphorus, Total
Caney Creek	OK121700040010_00	Macroinvertebrate Bio
Tenkiller Ferry Lake	OK121700020220_00 OK121700020220_00	Oxygen, Dissolved, Chlorophyll-A, Mercury, Phosphorus, Total
Walltrip Branch	OK121700050070_00	Macroinvertebrate Bio
Cedar Hollow Creek	OK121700030110_00	Macroinvertebrate Bio Fish Bioassessments
Tahlequah Creek (Town Branch)	OK121700030040_00 OK121700030020_00	Enterococcus, Escherichia coli
Stick Ross Creek	OK121700030030_00	Macroinvertebrate Bio
Park Hill Creek	OK121700020270_00	Macroinvertebrate Bio
Elk Creek	OK121700020180_00	Oxygen, Dissolved
Chicken Creek	OK121700020110_00	Fish Bioassessments
Deep Branch	OK121700010020_00	Oxygen, Dissolved

Causes: A Changing Watershed


- Streambank erosion
- Increased average annual precipitation
- Increasing streamflow
- Higher runoff rates and sustained flow
- Construction in the floodplain
- De-vegetation of the riparian corridor and other land management practices

A Changing Watershed

- Rapid Growth in Impervious Surface 85% increase in 50-100% impervious 2001-2019
- Population to nearly double to 1 million residents by 2045
 - 1,060,576 acres: In 1990 4.4 acres for every person;
 by 2045 there will only be 0.83 acres per person

Takeaways:

- The times they are a-changin'
- Half of what we are going to need in drinking, storm and wastewater has not yet been built?
- We are going to need to do a lot of work on nonpoint source water quality!

Municipal & Other Investments

Wastewater Treatment Plant Upgrades

- Noland and Westside plant upgrades (\$180.7m);
 SWU sludge dryer and clarification/headworks
 projects (\$67m); NACA pipeline upgrades (\$42m);
 Siloam Springs Biological Nutrient Removal (\$17.5m);
 Rogers sludge drying (\$31.2m)
- In 20 years, investments like in Springdale have reduced phosphorus discharge from an estimated 400,000 to 10,000 lbs of phosphorus annually.

Large-scale Urban Stormwater Management

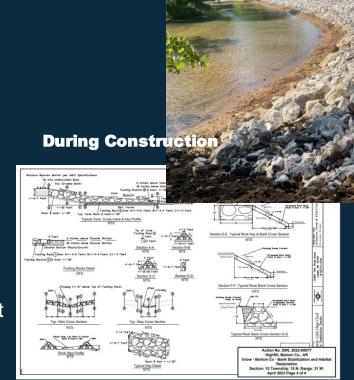
- Pinnacle under-street detention using Permeable Interlocking Concrete Pavement (PICP) on 30 acres saving the developer ~\$500K
- Rogers Municipal Stormwater Management Plan ~
 \$1m

Nutrient Management

- ~1.6m tons of poultry litter exported since 2005
 ~96m lbs of phosphorus (Tyson)
- 10% of pastures receive poultry litter (FTN and Associates)
- AR Stormwater Studies funded by ANRD and USACE ~\$350K

Riparian Restoration Program

- Focused on proven conservation BMP's
 - Riparian Revegetation
 - Constructed Wetlands
 - Stream Restoration
 - Livestock fencing
 - Off-stream watering facilities


2,700 feet restored, 10,000 sq foot bioretention to treat stormwater

LITTLE OSAGE CREEK RESTORATION

Streambank stabilization and establishment of 60-foot riparian buffer along 4,000 linear feet with cattle exclusion

Riparian Restoration Program Achievements

- 6 conservation plans prepared since last year (**55 in total**)
- 21,079 linear feet of streambank restored/protected (21.49 miles, 102% of goal)
- 472 acres serviced by alternative watering facilities (1,422 acres, 107% of goal)
- 30,963 linear feet of fencing installed for rotation grazing (101,729 linear feet, 135% of goal)

Youth Education

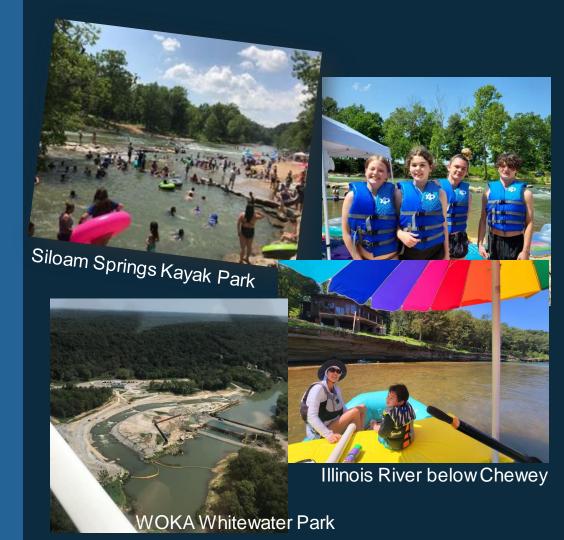
- Field trips to IRWP 28 acre indoor/outdoor education facility
- Mobile Learning Labs
 - Water Chemistry, Watershed Pollution and Solutions, Bioindexing Macroinvertebrates, Watershed Exploration
- 4,546 students educated since last year

~\$73.000

and installation,

90% grant

Other Notable Water **Quality Investments**

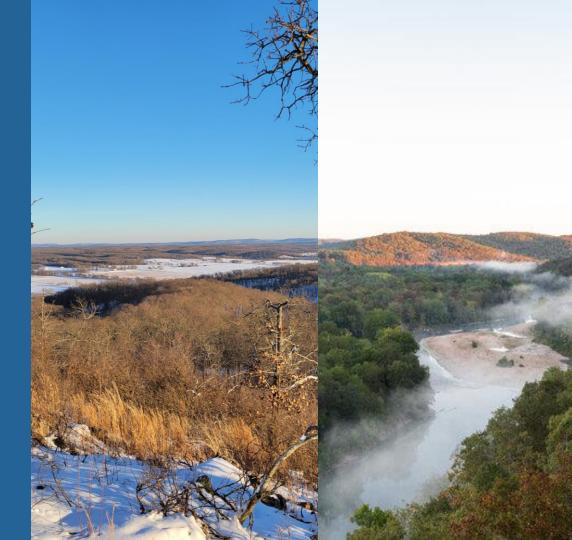


- Youth Education, 4,200 students educated in 2022,
- Sager Creek, Siloam Springs 2,700 feet restoration, 10,000 sq feet bio-retention, \$361,422

- 2015 2018: EPA 319, 15 BMPs servicing 7.7 acres, \$374,059
- 2019 2022: WFF Blue Cities/Blue Neighborhoods, \$250,000
- 2019 2022: USFWS, Water quality improvement practices, \$87,000
- 2019 2022: ANRD Benton County Unpaved Roads, \$275k
- 2020 2023: STRP, \$2.1m, 61 projects \$728k since March 2021

Recreation and our Economy

- In Arkansas and Oklahoma the Illinois River and its major tributaries are a multi-million dollar recreational amenity.
 - Illinois River generates \$12 million in tourism for just Cherokee County
 - OK Scenic River is a regional and national draw
 - Illinois River is only a ½ hour drive from much of NWA
 - Popular small mouth bass fishing destination
 - Use is growing rapidly year-over-year
- Investments in water quality projects have significant economic impact
 - Buffalo River Conservation Committee
 (2019) implimenting water quality projects
 - 1.47 million park visitors spent an estimated \$66.3 million, 960 jobs
- Significant economic impact opportunity for our region!


WMP UPDATE 2022/23

Goal of reducing exceedance of healthy limits for nitrate, pathogens, sediment, phosphorus and other contaminants that impact water quality

We are focused on:

- Better understanding and reducing stormwater through incentives
- Achieve a 75% forested riparian buffer
- Budgeting for nutrient and sediment reduction goals
- Putting conservation on the ground!

Our region depends on this watershed and we can invest in it now or pay a higher cost later.

LEGACY and WATERSHED

RIVER and TRIBUTARY

THANK YOU

director@irwp.org

irwp.org

Leif Kindberg Executive Director 479-422-5676

