

Conversion of Fats, Oils, & Greases Into Fuel

Arkansas Alternative Energy Commission

June 21st, 2012

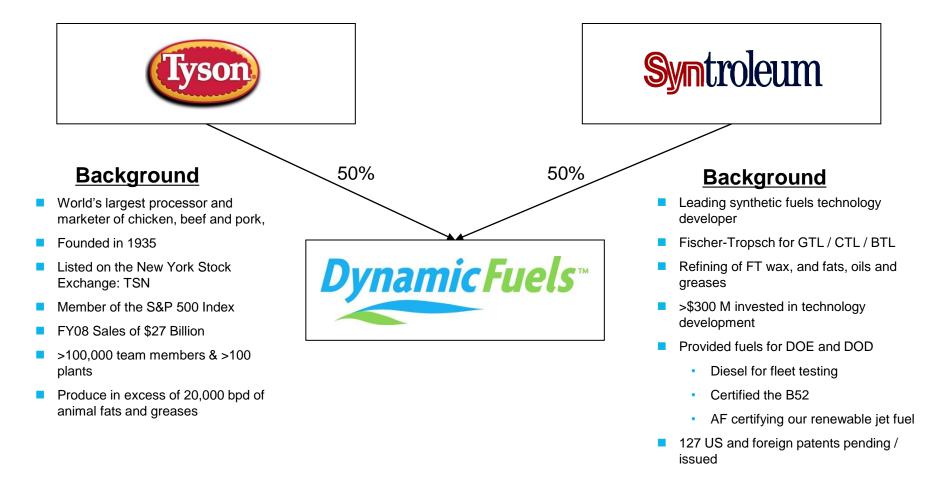
Background

Process Overview

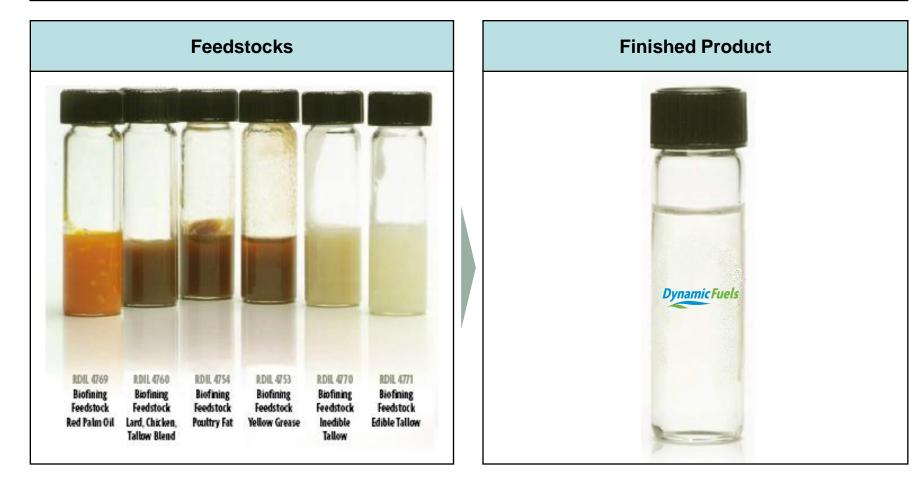
Product Properties

Plant Operations

Throughout the past several years, various governmental mandates (notably RFS 2) emerged to drive energy independence and growth of advanced biofuels


Context	Business Challenges	Options Available
Initiated RFS mandate in 2009	CapEx needed	 Avoid compliance \$32k+ / day fine, plus
Involves a variety of alternative fuels	Training	Benefit gained
 Ethanol (15B), bio-mass based diesel (1B), and 	Geography: Cold weather climates, volatile conditions	2. Buy RINs
cellulosic		3. Biodiesel
 Anticipated growth over time 	RFS administrative compliance	 High capex (terminal blend) Cold weather training
	Pump labeling for blends >5%	 Stability issues
Identifies obligated parties and volume requirements		Hygroscopic
 Based on production 		4. Renewable diesel
 Significant penalties for 		 Low capex (refinery blend)
non-compliance		 No training needed
		 Highly stable; Not hygroscopic
		 Highest RFS contribution
		 Competitive advantage with downstream / retail customers

Background: Joint Venture Formation



Capabilities Assembled

To capitalize on the opportunity, Tyson and Syntroleum agreed to form a joint venture, Dynamic Fuels

Dynamic Fuels could also meet the requirements of an obligated parties with a "drop in" fuel

500 M gal / yr

48 M gal / yr

gal / yr

9.6 %

10

\$4 M

\$40 M

8¢ / gal

Cost Avoidance: SME Biodiesel Integration Cost

Biomass-based diesel RFS	
Company X's share (approx.)	
Share of RFS	
Minimum terminals needed ¹	
cost / terminal	
Total Integration cost	
Integration cost / gal ²	

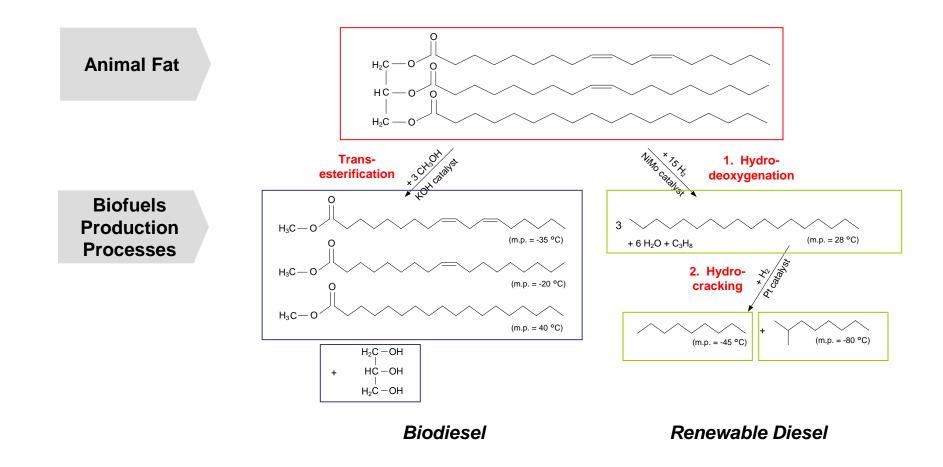
Assumptions	bpd	M gal / yr
Diesel throughput (large terminal)	7,500	→ 110
Max % renewable (avoid pump labeling)		5%
Max renewable volume / terminal		5.5

Note: (1) rounded up; (2) assumes 10 year equipment life; RFS shares and capital cost savings are approximate Source: DOE EIA

Eventually, Dynamic Fuels would be able to leverage its unique product properties to "value up" into premium markets

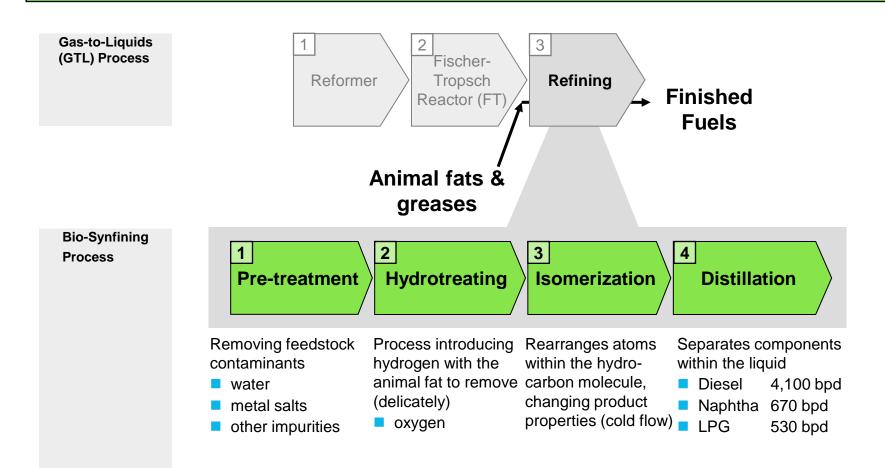
- U.S. Military
 - Aviation fuel
 - Emissions-challenged vehicles
- Commercial aviation
- European refining and marketing companies
 - Shell premium V-Power
- Renewable petrolatum
- Standby generation in California
- Consumer Goods
 - Soaps
 - Detergents
- Blend stock
- R10 (Commodity)

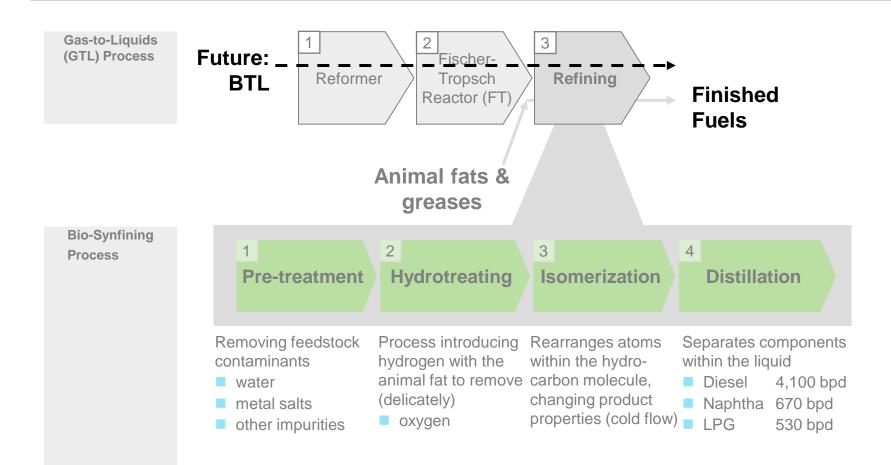
Background

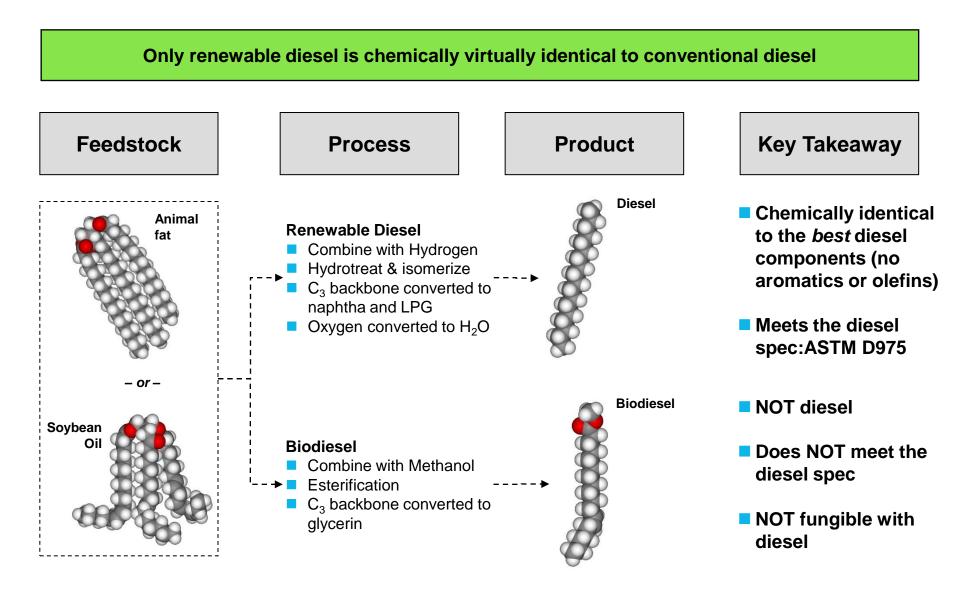

Process Overview

Product Properties

Plant Operations







Process Overview

Product Properties

Plant Operations

Renewable diesel is chemically identical to conventional diesel with significant product advantages compared to bio-diesel

		Biodiesel (B100)	Renewable Diesel (R100)	Implications
Product Properties	Storage stability ¹	weeks	months / years	Simpler handling
	Cloud point	0° C	-20 to -29° C	No heating req'd
	Copper strip corrosion	No. 3 max	No. 1	Carbon-steel compatible
	Hygroscopic	Yes	No	Simpler handling
	Cetane	47	70	Upgrade off-spec diesel & save \$\$

Note: (1) includes auto-oxidation by air, thermal decomposition by heat, and hydrolysis by water Source: Dynamic Fuels R-2 S2; REG

In addition, renewable diesel outperforms biodiesel on various environmental properties . . .

		Biodiesel (B100)	Renewable Diesel (R100)	Implications
Environmental Properties	NOX emissions	+10%	No change	Non-attainment: ok
	Particulate matter	-47%	-96%	Cleaner fuel
	PAH emissions (carcinogens)	-80%	-100% ¹	Safer
	Carbon Monoxide	-12% (B20)	-16% (R20)	Better for people / environment
	Total Unburned Hydrocarbons	-20% (B20)	-48% (R20)	Better for people / environment

Note: (1) expected due to complete saturation Source: National Biodiesel Board

... and can significantly reduce integration and compliance costs

		Biodiesel (B100)	Renewable Diesel (R100)	Implications
Integration Cost	Infrastructure costs	High cost: terminal blending	Low cost: refinery blending	Save time & money
	Training	Handling training required	Not needed	Save time & money
RFS Contribution	RFS contribution	1.5 / gallon	1.7 / gallon	Cheaper / fewer gallons needed for RFS

Compared to SME, renewable diesel performs better, is simpler to handle, saves time, and saves money

- Process Overview
- Product Properties

Plant Operations

Dynamic Fuels initiated construction in 2008 and began production in fall 2010

Key Milestones

- 11/15/07 Geismar site selected
- 2/28/08 Awarded FEED to CDI Engineering
- 7/11/08 Plant Sanction
- 8//21/08 Awarded construction contract
- 9/9/08 Received Air Permit from LA DEQ
- 10/6/08 Groundbreaking ceremony with Louisiana Governor Bobby Jindal
- 10/21/08 Issued \$100M in GO Zone Bonds
- 11/3/08 Began installing site construction offices
- 12/15/08 Poured first concrete foundations
- 11/15/10 Recognized first sale

Pouring tank foundations

Cold separator installation

Dynamic Fuels' first plant, located on the Mississippi river in Geismar, plugs into existing oil and gas industry infrastructure

Site Details

Site

- Brownfield site: others there include Lion Copolymer, Praxair, Rubicon, Hexion, Crosstex, BASF, Honeywell, Louis Dreyfus, Enterprise, Shell Chemical
- Started construction 2008
- Mechanically complete late 2009
- Begin commercial operations in 2010
- 75M gallons / year of synthetic fuel

Dynamic Fuels has flexibility to meet customer requirements and logistical needs

Typical Questions We Hear	Our Responses
 Transportation options? Truck Rail Pipeline Barge 	 Yes (preferred) Yes Yes Not currently; potentially available
DF Inventory on site?	2 tanks, 40k bbl each
Fuel testing?	Each tank full will be tested by a 3 rd party lab, COA provided
Offtake volumes	DF will attempt to accommodate all requests