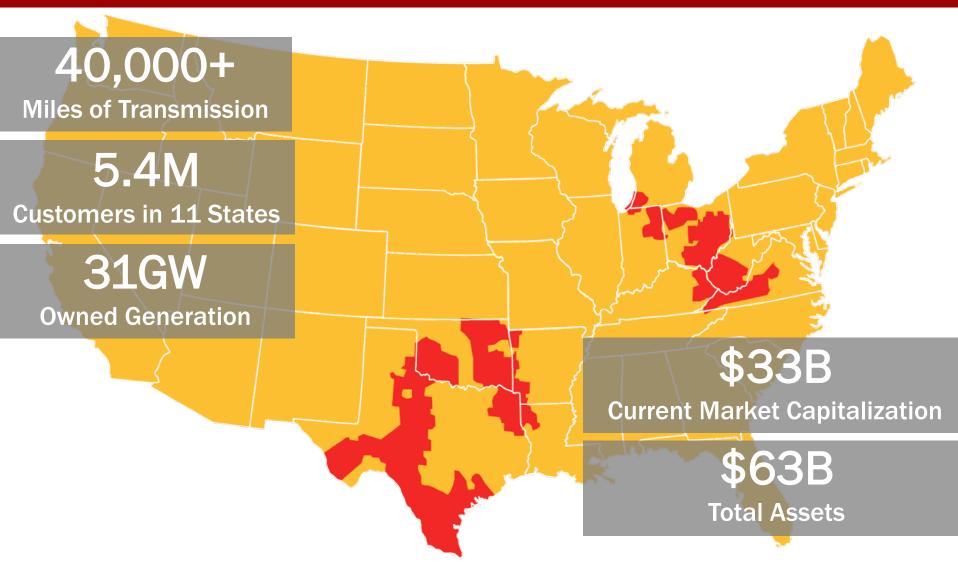


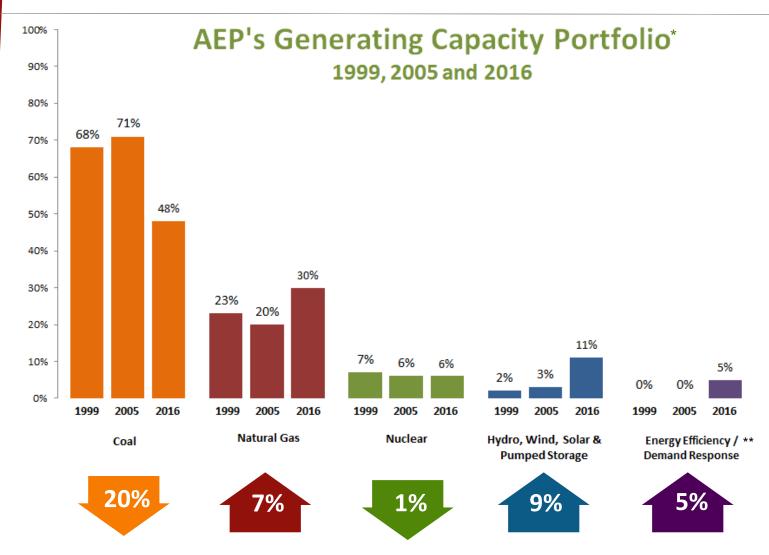
Arkansas Alternative Energy Commission –


Presentation on AEP/SWEPCO's Approach to Renewables Modeling

Little Rock, AR

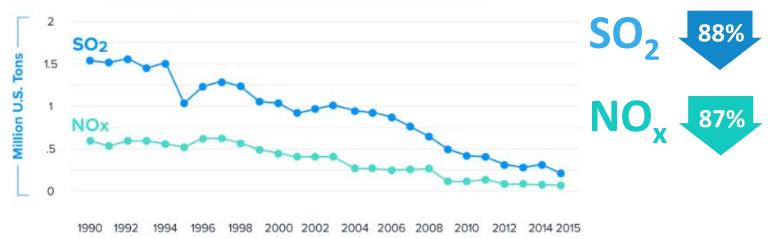
September 29, 2016

America's Energy Partner

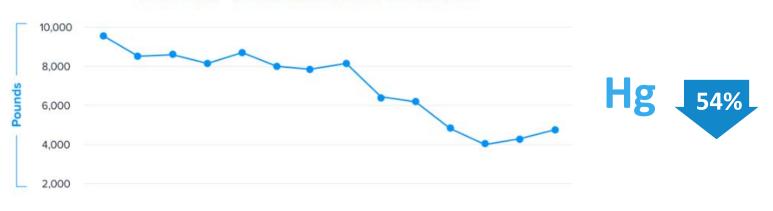

Sustainable energy resources

- Transforming our generation fleet
- Dramatically reducing emissions
- Adding more renewable sources
- Integrating renewables through the nation's largest transmission network

Reducing our carbon footprint



- 1999 includes AEP and Central and South West generation combined
- Includes Purchase Power Agreements
- ** Represents avoided capacity rather than physical assets


Dramatic emission reductions

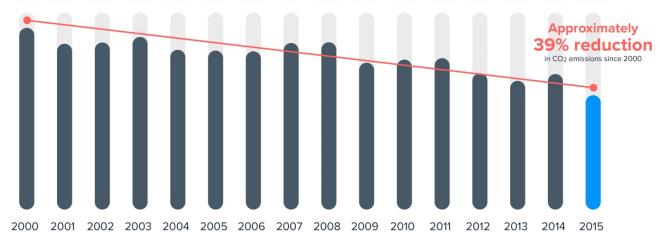
TOTAL AEP SYSTEM NOx & SO₂ EMISSIONS

TOTAL AEP SYSTEM MERCURY EMISSIONS

2002 2003 2004 2005 2006 2007 2008 2009 2010

2012 2013

2015 Mercury emissions data not yet available

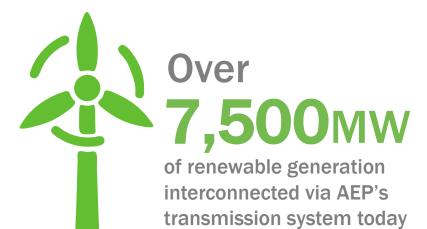


Dramatic emission reductions

TOTAL AEP SYSTEM - ANNUAL CO2 EMISSIONS

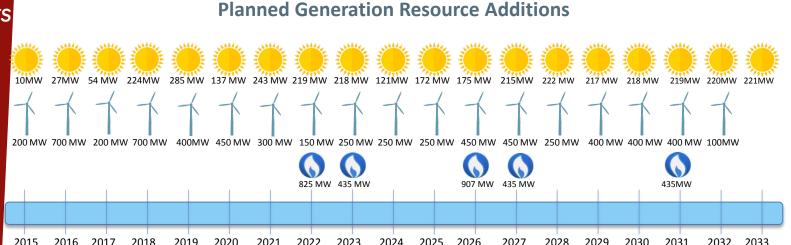
in million metric tons

167.1 152.7 153.6 158.0 146.0 145.8 145.2 150.7 150.9 132.0 135.1 136.5 121.9 115.3 122.7 **102.5**



Delivering clean energy resources

AEP's 2016 wind and solar portfolio (nameplate capacity)	MW
AEP Ohio	209
Appalachian Power Company	374
Indiana Michigan Power Company	466
Public Service Company of Oklahoma	1,138
Southwestern Electric Power Company	470
Competitive Wind & Wind PPAs	488
Total	3,145



SWEPCO private solar customer – VA Hospital in Fayetteville, 300 kW dc

Large-scale regulated renewable opportunities

SUSTAINABLE ENERGY RESOURCES

In total over the next 18 years AEP's regulated companies plan to add over:

- 3,000 MW of solar generation
- 6,000 MW of wind generation and
- 3,000 MW of natural gas combined cycle generation

Source: Current Internal Integrated Resource Plans, which largely do not reflect ITC/PTC extension, bonus depreciation or potential impact of Clean Power Plan. Wind and solar represent nameplate MW capacity

Total

(MW):

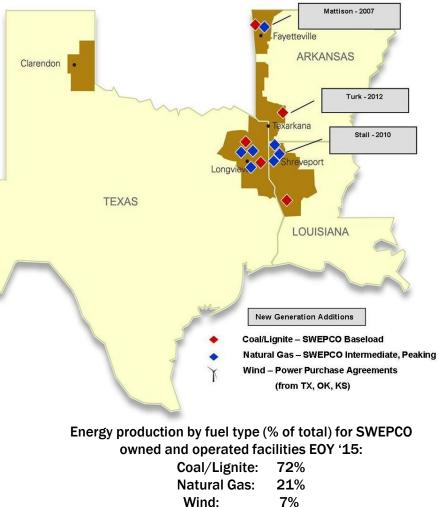
Solar: 3,417

Wind: 6.300

Natural Gas:

3,037

About Southwestern Electric Power Company


- Southwestern Electric Power Company (SWEPCO) is headquartered in Shreveport, LA
- More than 530,000 customers in Arkansas, Louisiana and Texas.
 - 116,000 customers AR
 - 230,000 customers LA
 - 184,000 customers TX
- SWEPCO also serves wholesale customers which represent about 14% of its internal energy requirements, net of customer-supplied generation
- SWEPCO participates in the Southwest Power Pool Regional Transmission Organization which establishes system reliability criteria
 - Recently SPP has modified the reserve margin requirement from 13% to 12%...this change will impact the needed resources in the future. The data within this presentation that is based on the 2015 IRP will definitely be impacted by this change.
- SWEPCO is a unit of American Electric Power (NYSE: AEP), which is one of the largest electric utilities in the United States, delivering electricity to more than 5.4 million customers in 11 states.

SWEPCO's generating portfolio

Generation

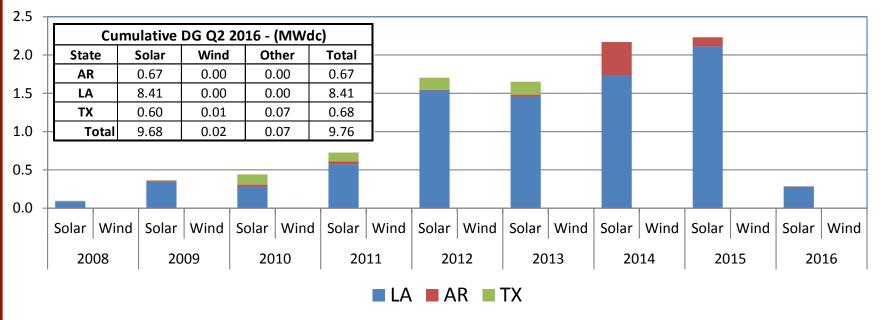
Plant, Location	Plant Capacity (MW)	Capacity Capacity (MW)	
Flint Creek Gentry, AR	517	258.5	Coal
Mattison Tontitown, AR	284	284	Gas
Turk Fulton, AR	650	477	Coal
Arsenal Hill Shreveport, LA	110	110	Gas
Stall Unit Shreveport, LA	511	511	Gas
Lieberman Mooringsport, LA	242	242	Gas
Dolet Hills (Cleco Corp.) Mansfield, LA	650	257	Lignite
Pirkey Hallsville, TX	675	580	Lignite
Knox Lee Longview, TX	469	469	Gas
Wilkes Avinger, TX	875	875	Gas
Welsh Cason, TX	1,035	1,034.8	Coal
Lone Star Lone Star, TX	50	50	Gas
TOTAL SWEPCO	6,068	5,148.3	

Wind power purchase agreements - 469.15 MW

SWEPCO's renewable generation portfolio

Facility Name	State	Name Plate Rating (MW)	COD	Contract End Date	Typical Annual Capacity Factor (%)		
Majestic	Texas	79.5	1/20/2009	1/31/2029	40 - 50		
High Majestic II	Texas	79.6	7/31/2012	12/31/2032	40 - 50		
Flat Ridge 2	Kansas	31	1/1/2013	12/31/2032	40 - 50		
Flat Ridge 2	Kansas	77.8	1/1/2013	12/31/2032	40 - 50		
Canadian Hills	Oklahoma	52.8	11/21/2012	11/20/2032	40 - 50		
Canadian Hills	Oklahoma	48	11/30/2012	11/29/2032	40 - 50		
Canadian Hills	Oklahoma	100.45	12/22/2012	12/21/2032	40 - 50		
Total		469.15					

In 2015, wind generation provided SWEPCO customers with approximately 7% of their energy needs

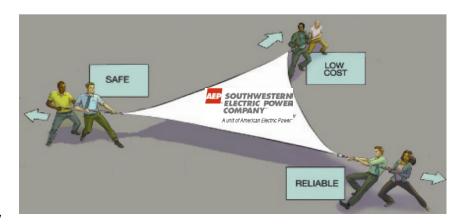


SWEPCO's existing distributed generation – *Private net metered*

SWEPCO's Net Metered Annual Distributed Generation Installs from 2008 - Q2 2016 - (MW_{dc})

LA growth was predominantly driven by the State Tax Incentive.

Determining future resources to meet SWEPCO's needs


Integrated Resource Planning Process Summary

- Resource planning is a complex effort that must balance the needs of a variety of constituents:
 - Customers,
 - Regulators,
 - Shareholders, and
 - Other Stakeholders...

...while ensuring that electricity is provided in a safe, reliable and efficient manner at reasonable rates.

- The process involves looking at:
 - "Big-picture" trends that affect energy markets
 - Developing and using forecasting and analysis models
 - Selecting approaches that will meet customer needs in the safest, most reliable and economical way given the uncertainties about the future.

There are many priorities that compete for resources as SWEPCO works toward its objective to provide safe, reliable, clean power at rates that are reasonable.

Regulation

Stakeholder Input

Grid Constraints

Resource and

Integrated Resource Planning

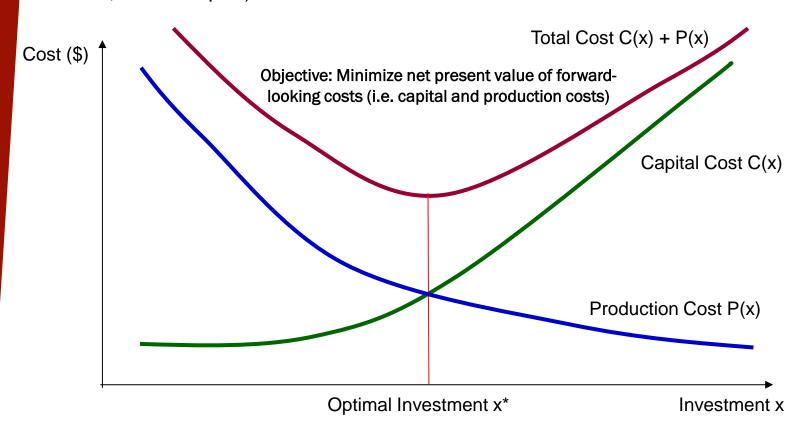
The Integrated Resource Plan Development

Creating an Integrated Resource Plan (IRP) involves four basic and interconnected steps:

- Step 1: Gathering data, developing input assumptions and creating scenarios
- Step 2: Developing the portfolio
- Step 3: Analyzing portfolios
- **Step 4:** Developing the IRP Report

Develop a forecast of customer demand Evaluate on-going capabilities of existing resources to meet that demand Determine the need to be filled – amount, timing and type Identify (supply and demand side) resources that may be available to meet the need Use sophisticated modeling techniques to provide insight to the best solution Program Costs

Customer behavior Fuel and Commodity Prices


Produce the integrated resource plan

IRP's objective function

Integrated Resource Planning Process Summary

The PLEXOS LTPlan model selects the optimal (lowest total cost) plan based on resource characteristics (e.g. installed cost, heat rate, fuel costs, min run times, load shapes).

IRP's resources considered

SWEPCO Potential Resources - Overview

Coal

- Baseload and intermediate resource
- Higher CO₂ emissions than natural gas
- Abundant fuel source
- Option to place environmental controls on existing uncontrolled units to lower non-CO₂ emissions, or retire

Wind and Solar

- Intermittent. Not always aligned with peak demand
- No emissions
- No fuel costs but some technologies have high capital costs
- Currently heavily driven by incentives

Nuclear

- Baseload with high capacity factor
- Very low fuel and energy cost
- No air emissions
- Large water use
- Spent fuel storage issues
- High initial construction cost/risks

Demand-Side Management

- Used to reduce peak load/capacity requirements
- Costs vary, but need to balance cost and customer reliability preferences
- Costs escalate with increased use
- May include customer owned generation

Natural Gas

- Moderate construction costs
- Lower CO₂ emissions than coal
- Slightly higher variable cost than coal
- Firm gas delivery service may increase costs

Energy Efficiency

- Low capital and operating costs
- Dependent on customer adoption
- · Program costs vary

"Traditional" supply-side generation – proxy cost & performance characteristics

AEP System-West Zone New Generation Technologies Key Supply-Side Resource Option Assumptions (a)(b)(c)

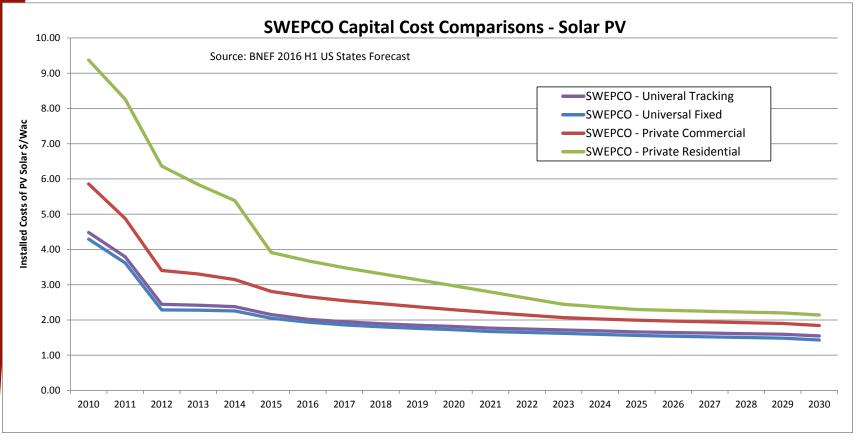
			Installed Trans. Full Load		Fuel Variable Fixed		Emission Rates			Capacity	Overall			
	Capa	ability (MV	V) (f)	Cost (d)	Cost	Heat Rate	Cost (e)	O&M	O&M	SO2	NOx	CO2	Factor	Availability
Туре	Std. ISO	Winter	Summer	(\$/kW)	(\$/kW)	(HHV,Btu/kWh)	(\$/MBtu)	(\$/MWh)	(\$/kW-yr)	(Lb/mmBtu)	(Lb/mmBtu)	(Lb/mmBtu)	(%)	(%)
Base Load														
Nuclear	1,610	1,620	1,540	6,600	64	10,500	1.1	5.6	109.5	0.0000	0.000	0.00	90	94
Base Load (90% CO2 Capture New Unit)														
Pulv. Coal (Ultra-Supercritical) (PRB)	540	550	530	8,000	28	12,500	3.7	9.5	77.7	0.1000	0.070	21.3	85	90
IGCC "F" Class (PRB)	490	490	480	7,700	28	10,300	3.7	9.2	80.6	0.0638	0.062	21.3	85	88
Base / Intermediate														
Combined Cycle (1X1 "F" Class)	380	400	430	1,400	60	6,600	7.7	3.1	16.1	0.0007	0.009	116.0	60	89
Combined Cycle (1X1 "J" Class)	440	450	430	1,200	60	6,500	7.7	3.0	14.8	0.0007	0.007	116.0	60	89
Combined Cycle (2X1 "J" Class)	910	940	910	900	60	6,400	7.7	2.2	8.7	0.0007	0.007	116.0	60	89
Combined Cycle (2X1 "H" Class)	990	1,020	980	900	60	6,400	7.7	2.2	8.4	0.0007	0.007	116.0	60	89
Peaking														
Combustion Turbine (2 - "E" Class) (b)	170	180	180	900	60	11,700	7.7	1.4	12.7	0.0007	0.009	116.0	25	93
Combustion Turbine (2 - "F" Class, w/evap coolers) (b)	470	480	480	600	60	10,000	7.7	1.4	7.3	0.0007	0.009	116.0	25	93
Aero-Derivative (1 - Large Machine)	100	110	100	1,500	60	9,100	7.7	4.3	20.9	0.0007	0.011	116.0	25	95
Aero-Derivative (2 - Large Machines) (b)	200	210	200	1,300	60	9,100	7.7	4.3	17.5	0.0007	0.007	116.0	25	95
Aero-Derivative (2 - Small Machines) (c)	90	100	90	1,300	60	9,700	7.7	3.3	11.6	0.0007	0.093	116.0	25	96
Recip Engine Farm (3 Engines)	50	50	50	1,400	60	8,500	7.7	4.5	20.2	0.0007	0.018	116.0	25	96
Battery Storage (Lithium-Ion)	10	10	10	2,300		0			15.9				25	94

Notes: (a) Installed cost, capability and heat rate numbers have been rounded.

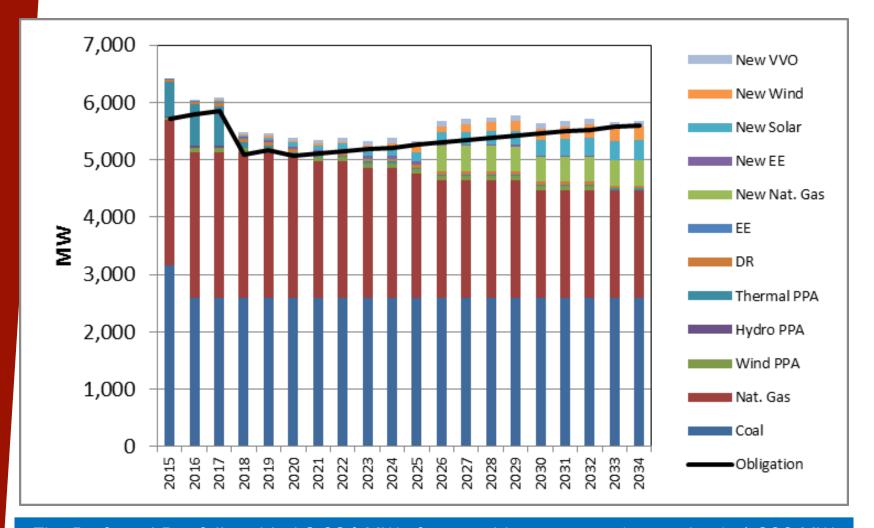

- (b) All costs in 2016 dollars. Assume 2.14% escalation rate for 2016 and beyond.
- (c) \$/kW costs are based on nominal capability.
- (d) Total Plant & Interconnection Cost w/AFUDC (AEP-West rate of 7.0%, site rating \$/kW)
- (e) Levelized Fuel Cost (40-Yr. Period 2017-2056)
- (f) All Capabilities are at 1,000 feet above sea level
- (g) Levelized cost of energy based on assumed capacity factors shown in table.

In addition to publicly available data from the US Energy Information Administration, SWEPCO used data from EPRI and vendors to estimate resource cost & performance assumptions.

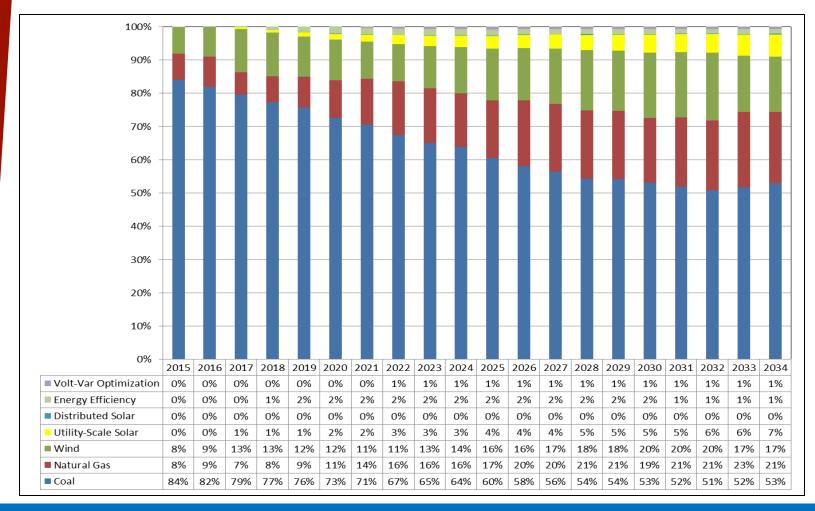
The cost and performance characteristics are considered "Proxy" and reasonable to be modeled within the IRP process.


Renewable generation – Wind resource update

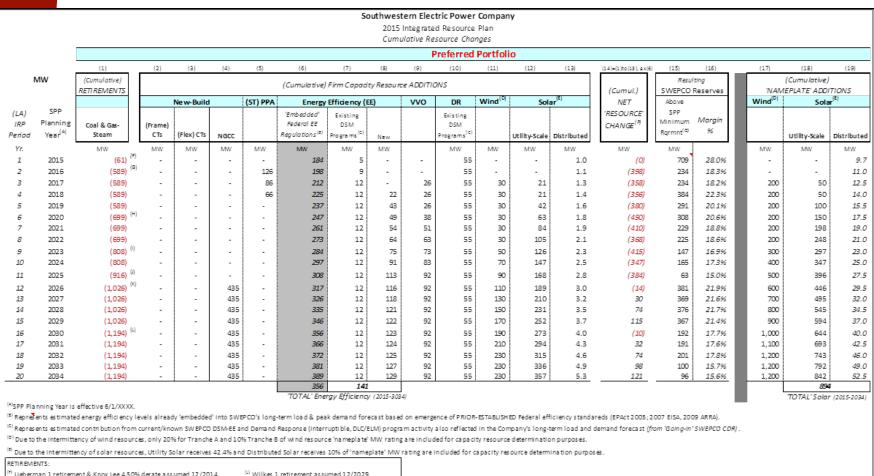
- The Production Tax Credit extension at the end of 2015 provides significant incentives to invest in wind resources, ~\$23/MWh
- As well as the Safe Harbor provisions that allow for example a 2016 project to go into service by the end of 2020 and receive the 2016 PTC value
- The PTC extension was not modeled in the 2015 IRP
- Wind resource prices continue to decline and performance continues to improve
- In general cost estimates within the IRP are based on the DOE Wind Vision Report with near term adjustments based on market knowledge
- Due to the pending SWEPCO Wind RFP no updated pricing is provided.


Renewable generation – Proxy solar cost & performance characteristics

- Pricing for solar resources continues to decline
- Within the IRP modeled universal solar resource as 10 MW single axis resource, limited to 5 per year. With capacity factors ranging from approximately 20% to 32% depending on location & design
- Within the IRP private rooftop solar resources were estimated to grow from the historical installed base of 7.35 MW at 5% per year for a total of 50 MW over the planning period


IRP results - Preferred portfolio - Capacity position

The Preferred Portfolio added 2,094 MW of renewable resources (nameplate); 1,200 MW of wind resources, 842 MW of universal solar & 52 MW of private rooftop solar.


IRP results – Preferred portfolio - Energy position

The Preferred Portfolio's energy position shows a significant portion of renewable energy is added to the portfolio

IRP results – Preferred portfolio

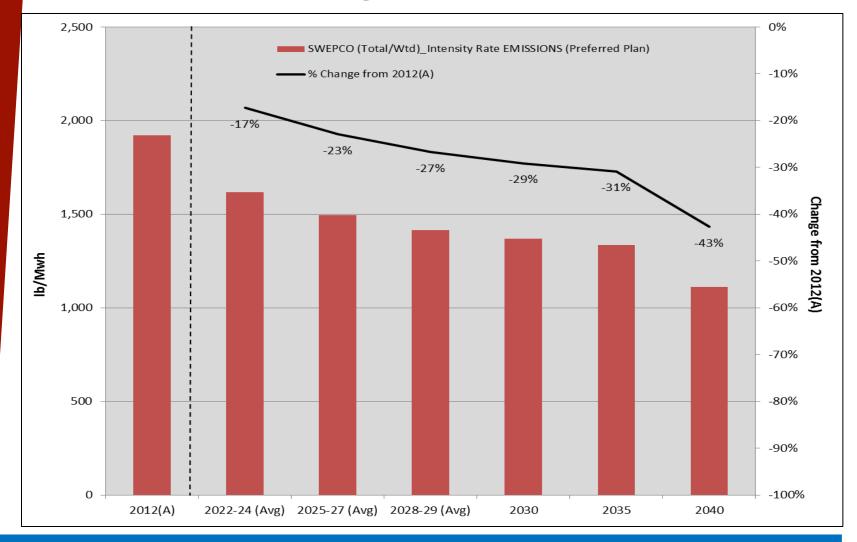
The Preferred Portfolio added 2,094 MW of renewable resources (nameplate); 1,200 MW of wind resources, 842 MW of universal solar & 52 MW of private rooftop solar.

Lieberman 1 retirement & Knox Lee 4 50% derate assumed 12/2014.

⁽a) Welsh Unit 2 retirement effective approximately June 1, 2016.

Lieberman 2, Lone Star & Knox Lee 4 retirement assumed 12/2019.

Lieberman 3 retirement assumed 12/2022


Lieberman 4 retirement assumed 12/2024

Arsenal Hill 5 retirement assumed 12 /2025

⁽P) Exdudes cumulative annual changes in SWEPCO SPP 'Load Responsibility' (coincident peak demand) and 3rd-party resources... which also impacts relative capacity resource position

IRP results – Preferred portfolio – Carbon intensity

The Preferred Portfolio reduces SWEPCO's carbon intensity by 29% below 2012 levels by 2030.

Current activity

- On August 17, 2016, SWEPCO issued a Request for Proposals for the purchase of wind resources
 - Proposals up to 100MW and can be commercial by December 31, 2018
 - Projects must be interconnected to the Southwest Power Pool and located in Arkansas, Louisiana, Texas, Oklahoma, Kansas or Missouri
 - Bids were due September 15, 2016
- Three-year EE portfolio filing was made in Arkansas on June 1, 2016
 - Projected energy savings are 31.9 GWh per year (2017-2019)
 - Projected savings should continue to exceed state mandated goals
 - APSC approval expected during the fourth quarter
- SWEPCO has exceeded the state EE goals since their initiation in 2011