Bureau of Legislative Research

Policy Analysis \& Research Section

Funding to Increase Teacher Salaries: Distribution Method Options

September 8, 2014

Teacher Salary Overview

- Statutory minimum salary schedule:
>16 steps for each year of experience from 0 to 15 years
$>$ Minimum: \$29,244 for BA \& 0 yrs. exp.
$>$ Top of schedule: $\$ 41,130$ for MA \& 15 yrs. exp.
$>$ Unchanged since the 2008-09 school year
- Average salary used in the 2013 matrix: $\$ 48,356$ plus benefits
- Actual average salary in 2013: $\$ 47,316$

Recap of Proposals

	Current	Proposal $\mathbf{\# 1}$	Proposal $\# 2$	Proposal $\# 3$
Description		Increase minimum to $\$ 31,000$	Increase schedule 1%	Increase schedule 2%
Minimum BA	$\$ 29,244$	$\$ 31,000$	$\$ 29,536$	$\$ 29,829$
Minimum MA	$\$ 33,630$	$\$ 35,650$	$\$ 33,966$	$\$ 34,303$
Total Cost ${ }^{\star}$		$\$ 2.35$ million	$\$ 121,000$	$\$ 333,000$

*Additional cost in 2012-13 if proposed minimums had been in place

Questions to Consider

- Purpose of the funding? Payment for new requirement or transition funding to what has been funded but not required?
- One- or two-time payment or ongoing?
- Target districts with salary schedules at the statutory minimum or increase funding for all districts?
- Total amount to increase?
- Restrict funding?

Option A. 1

- Calculates the average salary in each district's schedule and compares it with the average salary in the proposed schedule.
- Difference is multiplied by number of teachers funded in matrix.

Example A. 1

	Proposal	Low-Paying District	High-Paying District
BA, 0 Years Exp.	$\$ 31,000$	$\$ 29,244$	$\$ 44,570$
BA, 15 Years Exp.	$\$ 37,750$	$\$ 35,994$	$\$ 54,915$
MA, 0 Years Exp.	$\$ 35,650$	$\$ 33,630$	$\$ 47,094$
MA, 15 Years Exp.	$\$ 43,150$	$\$ 41,130$	$\$ 57,645$
Average Step Value	$\$ 36,888$	$\$ 35,000$	$\$ 51,056$

Schedule Difference
Low-Paying District
High-Paying District
$\$ 36,888-\$ 35,000=\$ 1,888$
$\$ 36,888-\$ 51,056=(\$ 14,168)$

Option A. 1 Example

	Low-Paying District	High-Paying District
ADM	750	20,000
students	students	

	Low-Paying District	High-Paying District
Schedule Difference	$\$ 1,888$	$-\$ 14,168$
Number of Teachers	37.41	997.6
Payment Amount	$\$ 70,630$	Negative Value

Option A. 1 Example

- Districts already paying above the pay schedule receive $\$ 25$ per classroom teacher in the matrix - the lowest step value difference of any district receiving funding.

	High-Paying District
Schedule Difference	$\$ 25$
Number of Teachers	997.6
Payment Amount	$\$ 24,940$

Option A. 1 Features

- Total cost: \$2.7 million (2012-13)
- Every district receives funding
- Intended to be temporary to ease transition to higher salary schedule

Option A. 2

- Same method as Option A.1, but uses 33.665 teachers instead of 24.94 classroom teachers
- Total cost: $\$ 3.64$ million

Option B

Like Option A, but based on the difference between a district's actual salary schedule and the median salary schedule.

Option B Example

	Low-Paying District	High-Paying District	Median
BA, 0 Years Exp.	$\$ 29,244$	$\$ 44,570$	
BA, 15 Years Exp.	$\$ 35,994$	$\$ 54,915$	
MA, 0 Years Exp.	$\$ 33,630$	$\$ 47,094$	
MA, 15 Years Exp.	$\$ 41,130$	$\$ 57,645$	
Average Step Value	$\$ 35,000$	$\$ 51,056$	$\$ 37,687$

Schedule Difference

Low-Paying District
High-Paying District
$\$ 37,687-\$ 35,000=\$ 2,687 \quad \$ 37,687-\$ 51,056=(\$ 13,369)$

Option B Example

	Low Paying District	High Paying District
Schedule Difference	$\$ 2,687$	$-\$ 13,369$
Number of Teachers $(24.94$ per 500 ADM)	37.41	997.6
Payment Amount	$\$ 100,521$	Negative Value

Option B Features

- Total Cost: $\$ 5.29$ million
- 119 districts receive funding
- Districts that receive funding receive significantly more than under Option A, but other districts receive no funding
- Because Option B is based on the median salary schedule (rather than one-time salary schedule change), could be used as ongoing distribution method

Option C. 1 : Per-Student Funding

- Possible per-student funding amount: \$15, which is the average per-student increase districts would have paid in 2013 if minimum salary had been $\$ 31,000$
- Provides funding at the same rate for highand low-paying districts
- Total cost for $\$ 15$ per-student increase: $\$ 6.86$ million

Option C.2: Per-Student Funding

- $\$ 7$ per student for district above 3,000 ADM
- $\$ 15$ per student for districts between 500 and 3,000 ADM
- \$30 per student for districts under 500 ADM
- Total cost: \$5.12 million

Option C Features

- All districts receive some level of funding
- Option C. 1 could be easily integrated into matrix

Possible Policies on Restricted Uses

- No restrictions
- Funding can be used only for teacher salaries
- Districts that accept funding could be required to:
- Commit to increase salary schedule by specified amount in subsequent year
- Limit uses of NSL funding (e.g., first 2.5 instructional facilitators must be funded with foundation funding before using NSL funding)

Option Cost Summary

Option	Description	2012-13 Cost
A. 1	Compares with Proposed Salary Schedule; Multiply by \# of Classroom Teachers	$\$ 2.7$ million
A. 2	Compares with Proposed Salary Schedule; Multiply by \# of All Teachers	$\$ 3.64$ million
B	Compares with Median Salary Schedule	$\$ 5.29$ million
C. 1	Per-Student Funding: One Rate	$\$ 6.86$ million
C. 2	Per-Student Funding: Graduated Rates	$\$ 5.12$ million

